Exercise 2

(a) If A is the area of a circle with radius r and the circle expands as time passes, find $d A / d t$ in terms of $d r / d t$.
(b) Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the area of the spill increasing when the radius is 30 m ?

Solution

The area of a circle with radius r is

$$
A=\pi r^{2}
$$

Differentiate both sides with respect to t, using the chain rule on the right side.

$$
\begin{gathered}
\frac{d}{d t}(A)=\frac{d}{d t}\left(\pi r^{2}\right) \\
\frac{d A}{d t}=\pi \frac{d}{d t}\left(r^{2}\right) \\
\frac{d A}{d t}=\pi(2 r) \cdot \frac{d r}{d t} \\
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{gathered}
$$

The radius of the oil spill is increasing by 1 meter per second, so $d r / d t=1 \mathrm{~m} / \mathrm{s}$. Therefore, at $r=30 \mathrm{~m}$, the rate that area is increasing is

$$
\left.\frac{d A}{d t}\right|_{r=30}=2 \pi(30)(1)=60 \pi \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

